Bayesian Networks for Supporting Model Based Predictive Control of Smart Buildings
نویسندگان
چکیده
Optimal behaviour is one the most desired features of contemporary technological systems. Challenges like secure operation, energy efficiency, and reliable performance call for the optimised behaviour of any systems that operate and interact in our living environment. The challenge in achieving optimised performances resides in the uncertainty that qualifies the environment surrounding technical systems. Whatever model drives the systems’ behaviour, it must be able to face unforeseen events, to manage the vagueness of the sensing apparatus and the errors of the control devices. Bayesian statistics is one of the theoretical backgrounds that support the construction of systems which are able to act effectively inside complex environments. Bayesian statistics is grounded on the fundamental premise that all uncertain‐ ties should be represented and measured by probabilities. Then, the laws of probabilities apply to produce probabilistic inferences about any quantity, or collection of quantities, of interest. Bayesian inference can provide predictions about probability values pertaining time series or can model parameters in terms of probability distributions that represent and summarize current uncertain knowledge and beliefs. Bayesian inference uses a kind of direct causal or model-based knowledge to provide the crucial robustness needed to make the optimised behaviour of technical systems feasible in the real world [1]. Once this kind of models have been built, then theoretically sound evidence propagation algorithms are used to update the belief set about the external environment and about the system performance, on the basis of acquired evidence. This is the fundamental mechanism that drives the construction and the operation of intelligent systems based on Bayesian inference. This chapter describes a sample engineering application of this approach on a large scale. It concerns the design and the development of an intelligent building energy management system (smart BEMS) that is able
منابع مشابه
Load-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کاملBuildings-to-Grid Integration Framework
This paper puts forth a mathematical framework for Buildings-to-Grid (BtG) integration in smart cities. The framework explicitly couples power grid and building’s control actions and operational decisions, and can be utilized by buildings and power grids operators to simultaneously optimize their performance. Simplified dynamics of building clusters and building-integrated power networks with a...
متن کاملGreen Energy Generation in Buildings: Grid-Tied Distributed Generation Systems (DGS) With Energy Storage Applications to Sustain the Smart Grid Transformation
The challenge of electricity distribution’s upgrade to incorporate new technologies is big, and electric utilities are mandated to work diligently on this agenda, thus making investments to ensure that current networks maintain their electricity supply commitments secure and reliable in face of disruptions and adverse environmental conditions from a variety of sources. The paper presents a new ...
متن کاملA swift neural network-based algorithm for demand estimation in concrete moment-resisting buildings
Rapid evaluation of demand parameters of different types of buildings is crucial for social restoration after damaging earthquakes. Previous studies proposed numerous methodologies to measure the performance of buildings for assessing the potential risk under the seismic hazard. However, time-consuming Nonlinear Response History Analysis (NRHA) barricaded implementing a prompt loss estimation ...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014